Skip to content

适用虚谷数据库版本

v12.9



适用虚谷数据库版本

v12.9


ST_TRIANGULATEPOLYGON

📄字数 621
👁️阅读量 加载中...

功能描述

计算多边形的约束 Delaunay 三角剖分。

语法格式

sql
GEOMETRY ST_TRIANGULATEPOLYGON(GEOMETRY geom);

参数说明

  • geom:目标 GEOMETRY 对象。

函数返回类型

GEOMETRY 类型

使用说明

  1. 支持孔和多边形。
  2. 多边形的约束 Delaunay 三角剖分是由多边形的顶点形成的一组三角形,并且在所有可能的三角剖分上具有最大总内角。 它提供了多边形的最佳质量三角测量。

示例

计算 LineString 的有效区域。 因为使用阈值为零,所以返回输入几何体中的所有顶点。

sql
SQL> SELECT ST_AsText(
         ST_TriangulatePolygon('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'));

+---------------------------------------------------------------------------+
|                                   EXPR1                                   |
+---------------------------------------------------------------------------+
| GEOMETRYCOLLECTION(POLYGON((0 0,0 1,1 1,0 0)),POLYGON((1 1,1 0,0 0,1 1))) |
+---------------------------------------------------------------------------+

(1 row)
sql
SQL> SELECT ST_AsText(ST_TriangulatePolygon(
         'POLYGON (( 10 190, 10 70, 80 70, 80 130, 50 160, 120 160, 120 190, 10 190 ))'::geometry
          ));

+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|                                                                                                         EXPR1                                                                                                         |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| GEOMETRYCOLLECTION(POLYGON((50 160,120 190,120 160,50 160)),POLYGON((10 70,80 130,80 70,10 70)),POLYGON((50 160,10 70,10 190,50 160)),POLYGON((120 190,50 160,10 190,120 190)),POLYGON((80 130,10 70,50 160,80 130))) |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

(1 row)